	[image: image1.png]

	

	Best Practices for Accessible Flash Design

	by Bob Regan

	May 2004

	Copyright © 2004 Macromedia, Inc. All rights reserved.

The information contained in this document represents the current view of Macromedia on the issue discussed as of the date of publication. Because Macromedia must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Macromedia, and Macromedia cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for information purposes only. MACROMEDIA MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Macromedia may have patents, patent applications, trademark, copyright or other intellectual property rights covering the subject matter of this document. Except as expressly provided in any written license agreement from Macromedia, the furnishing of this document does not give you any license to these patents, trademarks, copyrights or other intellectual property.

{INSERT OUR MARKS IN THE DOCUMENT} are either trademarks or registered trademarks of Macromedia, Inc. in the United States and/or other countries. The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Macromedia, Inc.
600 Townsend Street
San Francisco, CA 94103
415–252–2000

Contents

Understanding Accessibility in Flash
1

Defining User Requirements
2
Accessibility Best Practices
3
Provide Text Equivalents
3
Control Animation
6

Provide Context
7

Ensure Keyboard Access
8

Control Reading Order
9

Enable Component Accessibility
11

Provide Captions
13

Use Color Wisely
14

Resources
15

This document is designed to establish a basic framework with which to approach accessible design in Macromedia Flash. Given the infinite variety of controls, objects and applications possible in Flash, it is not feasible to construct a finite and fixed set of rules for accessible design. The central tenet of accessible design is to test, test, and test again. This also presents the greatest challenge of accessible design. In order to build accessible Flash content, designers need to develop at least a limited understanding of a screen reader and other assistive technologies.

This document includes the following sections.

· Understanding Accessibility in Flash

· Defining User Requirements

· Flash Accessibility Best Practices

· Resources

The first section, Understanding Accessibility in Flash, provides a brief overview of Flash accessibility and the specific challenges it presents as well as a recommended methodology for designing accessible Flash content. This section also presents a limited number of use cases to help designers who may be unfamiliar with accessibility to understand the specific strategies employed by people with disabilities.

The second section, defining user requirements, presents a limited number of use cases. The use cases may be implemented as personas in the design process with an explanation of issues, challenges, techniques and tools used in each case.

The third section, Accessibility Best Practices walks through a series of recommendations for accessible design in Flash. These are:

· Provide Text Equivalents

· Control Reading Order

· Ensure Keyboard Access

· Control Animation

· Provide Context

· Enable Component Accessibility

· Provide Captions

· Provide Control Over Audio Playback

· Use Color Wisely

· Support Users with Low Vision

The fourth and final section provides a list of resources for accessible design.

Understanding Accessibility in Flash

Web accessibility is the ability of any user, regardless of disability to access the same content and information on the Internet. For the Flash designer and developer, the challenge of is to remove the obstacles that prevent users with disabilities from effectively using a site or application.

The range of disabilities is broad and difficult to categorize; however, it is important to have some sense of the scope of the issue. A 1997 report by the U.S. Census Bureau categorizes 19.6 percent of the United States population as having some sort of disability. Within that group are individuals with:

· visual impairments,

· hearing impairments,

· mobility impairments, and

· cognitive impairments.

In order to create accessible Flash content, it is important to consider the use cases for people with disabilities. Users with disabilities frequently rely on hardware and software to access web content. These tools, known as assistive technologies, can range from screen readers to touch screens or head pointers which are used to access a keyboard. Screen readers enable users to hear, rather than read, the contents of a web page. The specific use cases for people with disabilities will be discussed in greater detail in the following section.

The release of Macromedia Flash MX and Flash Player 6 marked the first accessible versions of the Flash platform. As of today, Freedom Scientific's JAWS (version 4.5 and better), GW Micro's Window Eyes (version 4.2 and better), and Dolphin's HAL are screen readers that support Flash. While Flash has long been an essential enhancement to the content for people with cognitive disabilities, it was only with this release that people with visual impairments were able to access Flash content.

Flash uses Microsoft Active Accessibility (MSAA) to deliver information about Flash movies to screen readers and other assistive technologies. MSAA operates as the go between for the Flash player and the screen reader. The Macromedia Flash Player creates a list of objects on the screen and records them on the MSAA “data tree”. The screen reader will read this list as it encounters Flash content. As changes are made to the screen, the MSAA data tree is updated. As the movie changes, the screen reader returns to the top of the movie and starts reading through the list again.

By default, text objects in a Flash movie are read by screen readers. Screen readers are also able to identify buttons and movie clips with attached scripts. Screen readers however, cannot look at a graphic element on the screen and communicate its meaning. It is up to the designer to assign a text description of any graphic or animated elements in a Flash movie. This information can be assigned via either the accessibility panel or ActionScript. Some properties, such as “Make Child Objects Accessible” or “.forcesimple” have no counterpart in html. Designers will need to rely on information in this document as well as information found on the Macromedia Accessibility Resource Center to learn more about these properties and the associated techniques.

Screen readers and MSAA shape the experience of Flash content for users with visual disabilities in ways that are often quite unfamiliar to sighted designers. Given that screen readers always start from the top of the movie and can only read one thing at a time, there are some forms of Flash content that simply can not be made accessible. For example, many simulations require users to attend to several variables at the same time. Decisions must be made based on multiple factors and relayed back to the simulation quickly. While this is easy for people who are blind to do in the real world, it is quite difficult when using a screen reader.

Defining User Requirements

Accessibility is often defined in terms of two distinct measures; compliance with standards and usability for people with disabilities. The first measure is more easily quantified. You read the standard, test the content and decide if it passes. If all tests are met successfully, then the content is considered accessible. Yet the reality of accessibility is often more complex. The most common accessibility guidelines, the Section 508 Standards and the W3C Web Content Accessibility Guidelines, are written to support the accessibility of HTML content. While there are areas of overlap, the issues of HTML and Flash accessibility are not one and the same. The techniques associated with some requirements are quite different in Flash. At the same time, there are issues associated with applications created with Macromedia Flash that do not exist in HTML at all.

For this reason, it is extremely important that content created with Macromedia Flash be evaluated in a way that includes more than conformance with a set of standards. In order for Flash applications to be considered accessible, they should be evaluated against a series of use cases that includes people with disabilities. Just as designers frequently preview content in a variety of browsers and across operating systems, it is important that developers get into the habit of previewing content under the conditions of these use cases. Many developers find this to be the greatest challenge of accessible design with Flex. In particular, the screen reader poses a challenge for developers who tend to be a visually oriented group of individuals.

This section is intended to help developers understand a very basic set of use cases. The list below provides developers with a set of criteria to help them understand strategies and tools used by people with disabilities. While this list is not comprehensive, it serves as a useful thumbnail guide.

A user who is blind:

· Uses the keyboard for input exclusively
· Does not use the mouse

· Receives information about the movie from a screen reader

· Receives information about the movie from other audio events
· Doesn't use a screen magnifier

· May use a refreshable Braille display rather than hearing the information the screen reader gathers.

A user who is visually impaired (e.g. person with 20/300 vision):

· Relies heavily on the keyboard for input

· May use a mouse, depending on the extent of the visual impairment

· May use a screen magnifier exclusively to receive information about the movie

· May use a screen reader exclusively to receive information about the movie

· May use both a screen reader and magnifier together to receive information about the movie

· If using a screen reader, may use a refreshable Braille display rather than hearing the information the screen reader gathers.

A user who is visually impaired due to being color blind:

· Uses the mouse and/or the keyboard for input

· Does not need a screen reader or screen magnifier

· Needs visuals that are usable given specific color limitations.

A user with a mobility impairment:

· May be unable to use the mouse

· May depend more heavily on the keyboard

· May depend entirely on the keyboard

· Can receive information about the movie visually.

A user who is deaf or hard of hearing:

· Uses the keyboard and the mouse

· Receives information from the movie in a visual form.

Accessibility Best Practices

The following comprises a list of best practices for accessible design. This list is not intended to be fixed nor comprehensive. It is up to designers to make decisions about individual applications and whether they meet the requirements outlined in the use cases.

Provide Text Equivalents

Screen readers are not able to discern the meaning of graphic or animated elements on the stage. As a result, designers must provide a brief text description of graphic elements. Text equivalents can be provided for an either an entire movie, a single object within a movie or a group of objects within a movie.

Providing text equivalents for an entire movie

Text equivalents should be provided for an entire movie in cases where the movie can be conveyed using a single text equivalent. Examples of this include movies that show a simple animation, banner ads or complex movies that cannot otherwise be made accessible.

The text equivalent should be placed in the name field. It is generally advisable to make the contents of the name field short and focused in order to describe the function of the movie. The description field can be used for longer descriptions. However, both JAWS and Window Eyes read this content by default. As a result, long descriptions used in this field can result in an application or page that is tedious to listen to.

In cases where a single text equivalent is used for an entire movie, the child objects of the movie should be made inaccessible. This will prevent animations within the move from causing frequent updates to the screen reader. It will also facilitate automated testing of the content for accessibility.

The text equivalent may be assigned using the accessibility panel. In this screen shot below, a text equivalent is placed in the name field, “Animation of moon orbiting a planet.”

[image: image2.png] [image: image3.png]
To provide a text equivalent using ActionScript, a new object must be created for each instance and then the accessibility information assigned. Once the name value has been assigned, the accessibility objects must be updated. This is done once for all objects when a change is made. It is not necessary to update each instance of the object. Notice the sample code below includes a line to create the new object for the entire movie. Next, the value is assigned for the .name property and then the child objects are made inaccessible using the .forcesimple property. A complete list of the ActionScript properties is shown below with the corresponding fields on the accessibility panel.

_root._accProps = new Object();

_root._accProps.name = "Moon orbiting planet";

_root._accProps.forcesimple = true;

Accessibility.updateProperties();

The following is a list of accessibility properties in ActionScript.

Table 1: Accessibility Properties in ActionSctipt

	Property
	Type
	Equivalent in Accessibility Panel
	Applies to

	.silent
	boolean
	Make Movie Accessible/
Make Object Accessible
(inverse logic)
	whole movies
buttons
movie clips
dynamic text
input text

	.forceSimple
	boolean
	Make Child Objects Accessible
(inverse logic)
	whole movies
movie clips

	.name
	string
	Name
	whole movies
buttons
movie clips
input text

	.description
	string
	Description
	whole movies
buttons
movie clips
dynamic text
input text

Providing text equivalents for single movie clip

Unlike HTML, not every movie clip or button in a Flash movie requires a text equivalent. There are at least three cases that need to be considered here.

Case 1: Setting a movie clip to be silent

First, there are elements that are purely decorative, are repetitive or convey no content. These movie clips should be made inaccessible. This can be done using the Accessibility panel by deselecting the option, “Make Accessible.”

[image: image4.png]
This same property can be set using ActionScript. The following code example shows an object set to be inaccessible using the .silent property.

_root.logo_mc._accProps = new Object();

_root.logo_mc._accProps.silent = true;

Accessibility.updateProperties();

Case 2: Labels for buttons and controls
Flash includes an option called “auto-labeling.” If a text object is used within a button or a movie clip used as a button, the Flash player will assume that text object is the text equivalent for that button. It is important in these cases that the child objects of the movie clip are accessible. It is important to keep in mind that only a single text object can be used as a label and the text object must fit completely within the hit area of the button.

Auto-labeling also works for components such as radio buttons and list boxes used in a movie. The Flash player will assume text objects above or to the left of the control should be used as the label. Again, only a single text object will be used as a label.

If a text equivalent is assigned via the name property using either the Accessibility panel or ActionScript, that value will over ride the auto-labeling without disabling the auto-labeling completely. Auto-labeling can only be turn off on the accessibility panel and it can not be changed once it is set.

The screen shot below shows the auto-labeling option enabled.

[image: image5.png]
Case 3: Text equivalents for a single movie clip or button

If a text equivalent is assigned for a single object in a movie, this can be done via the Accessibility panel. The text equivalent should be relatively short and should address the function of the object, rather than a longer or more detailed description. This will help prevent the movie from becoming verbose and tedious to navigate.

The description field can be used for longer descriptions. However, JAWS and Window Eyes will both read this field by default. As a result, there is no advantage to using this field at this time.

Control Reading Order

Controlling the reading order of a Flash movie is perhaps the single most important and challenging aspect of accessible Flash design. The default reading order of a Flash movie does not follow a predictable left to right, top to bottom order. As a result, contents of a Flash movie can be difficult to understand. Take the example below. Based on the visual presentation of the alphabet in three rows, it would be natural to expect the reading order to follow alphabetical order.

[image: image6.png]
However, the actual reader order jumps between letters in each row. The resulting order is shown below.

[image: image7.png]
There are three strategies for controlling reading order. The simplest is to keep the physical size of the movie small. The second strategy requires controlling the reading order using ActionScript. A third strategy places a duplicate version of content off-stage in a single column.

It is very important that the reading order of a movie be tested from the beginning of the development process using a screen reader. It is significantly more work to modify the reading order of a Flash movie once the movie has been completed. Therefore using a screen reader to evaluate the reading order as the movie is developed can facilitate understanding when a problem has been introduced and how to rectify the issue.

Limit the size of the stage

A small Flash movie that is less than 300 pixels wide and consists of a single column or a single row of objects does not require any specific control over the reading order. Examples might include small animations or applications that pop up in a separate window, a navigation bar that consists of a single row or an application that consists of a single column.

Controlling reading order using ActionScript

The most precise means for controlling reading order is to use ActionScript. This method allows the designer to precisely control the reading order using the .tabindex property in ActionScript. There is no distinction in ActionScript between reading order and tab order. However, when using ActionScript to control the reading order of a Flash movie, all instances within the movie must be included in that list of .tabindex values, including all text fields and decorative elements.

Every instance over the life of the movie requires an instance name

In controlling the reading order, it is important to ensure that every instance on the stage has an instance name. This includes all text, movie clip and button symbols as well as all components over the life of the movie.

Do not use static text

Since it is not possible to provide an instance name to static text objects, a single instance of static text will result in the entire reading order reverting to the default. Controlling the reading order using ActionScript requires the use of dynamic text fields. This will have implications for the font used in the application and potentially impact the overall file size. To learn more about handling font symbols in Flash, please visit:

www.macromedia.com/support/flash/ts/documents/flashfonts.htm
Include off-stage or obscured elements

The list of .tabindex values must include all instances over the life of the movie, this includes elements that are not visible and sit off stage or hidden under another instance. It is important that if these elements should be obscured from a screen reader user, the ._visible property should be set to false or the .silent property should be set to true. This also means that elements that are not visible at the start of the movie, but will be visible later must also be included in the list of .tabindex values.

Controlling reading order when loading swfs at runtime

In cases where a series of child .swf files are loaded into a parent movie, the list of .tabindex values must be listed in the child movie clip. However, it is important that the values list in the reading order of each child swf be unique. For example, if two child movies loaded into a parent movie each have three elements with .tabindex values of 1, 2 and 3, the screen reader will read the first value of the first movie loaded, then the first value of the second movie loaded. Next, the screen reader will read the second value of the first movie clip loaded and then the second value of the second movie clip loaded and so on. In order to read the contents of the first movie followed by the contents of the second movie, the list of .tabindex values for the first movie should be 1, 2, 3 while the list of values for the second move should be 4, 5, 6. These values need not be sequential, but they should be unique.

Using 3rd party repair and validation tools

As of this writing, there is one third party tool from HiSoftware available to help build a reading order with Flash content. Called, ACCRepair, this tool is sold as an extension to Flash. It will look for missing instance names, convert static text into dynamic text and build the reading order. This tool can be particularly helpful in cases where there are a large number of instances on stage. For more information about ACCRepair, see:

www.macromedia.com/software/flash/extensions/accrepair/
Controlling reading order using off stage content

In cases where the application relies on a highly dynamic content, it can be difficult to specify the reading order in advance. In this very small set of applications, it is possible to control the reading order by placing a second set of content off stage in a single column. The on stage content is all rendered as inaccessible to prevent the screen reader from reading it. The second set of content is positioned in a column so the reading order does not jump between unrelated elements.

There are two primary drawbacks to this method. First, it increases the number of objects in the movie, impacting the file size and performance of the movie. Second, users of screen magnifiers may find the off stage content conflicts with the on stage visual content they are working with. Screen magnifiers not only increase the size of elements on the stage, but move them to the center. If the on-stage content is inaccessible, off stage content will draw the focus of the screen magnifier creating a very confusing experience visually. This method is often used in conjunction with screen reader detection, but it is important to consider that users may have both a screen reader and magnifier in use simultaneously.

Screen reader detection

Since this case is intended to benefit screen reader users alone, this method is frequently used in conjunction with screen reader detection. Flash has a unique advantage over JavaScript in that it is able to use MSAA to detect the presence of a screen reader. The method Accessibility.isActive() will return a value of true if a screen reader is present and it is currently focused on the Flash content. It is important that this method not be called in the first second or so in the life of the movie, or it could return a false negative. Rather than calling this method in the first frame of a movie, many designers will attach this method to the first button in the movie.

Building off stage content

If Accessibility.isActive() returns a value of true, the contents on screen are set to be inaccessible. Perhaps the easiest means of accomplishing this is to place all of the on stage content in a single movie clip and then set the .silent property of that movie clip to true. It is preferable to use .silent as opposed to altering the visibility of the movie clip since people relying on screen readers might be working together with a sighted person relying on the on stage content visually.

Next, the off stage content is loaded into a single column. This column need not match the height of the movie. It is important that as changes are made on stage that the off stage content is updated at the same time.

Control Animation

While Flash is now much more than an animation tool, it is still commonly used to create and deliver animations for a variety of purposes. There are three key issues to consider when using animations in Flash.

Hide Child Objects

As mentioned earlier, constant changes to the screen can cause a screen reader to refresh constantly. This can be very frustrating to screen reader users when they are trying to read through content and the screen reader is repeatedly returning to the top of the screen.

To prevent constant screen reader refreshes, hide the child objects of the movie clips that contain animation. This can be accomplished via the Accessibility panel by deselecting the “Make Child Objects Accessible.” Using ActionScript, the .forcesimple property should be set to true.

Settle Motion

Avoid constant motion on the screen when the user is expected to read text on the screen. For users with certain learning and cognitive disabilities, it can be a powerful distraction when the screen is moving. It is acceptable to use motion together with text, but the screen must settle after a moment or two.

Avoid Blinking

It is very important that Flash movies avoid blinking for more than a second across a large viewable area of the screen. Photo-sensitive epilepsy can be triggered by blinking at specific rates if viewed at close quarters across a significant portion of one’s field of vision. There is no way to predict a flicker rate precisely given it is dependent on the end users machine. Subsequently, it is important to avoid flicker completely.

Provide Context

Screen readers are not able to provide many cues to a screen reader user about the layout or structure of a Flash movie. As a result, it is important that complex movies provide a description and alert the user when controls have multiple states. There is no way to provide a set means for determining when a movie is sufficiently complex to merit a description or when a control requires additional cues. It will be up to each designer to make these determinations.

Provide a description

In cases where a movie contains several controls, it is important to provide the end user with a short description of the purpose of the movie, the controls contained within it, and a list of keyboard shortcuts used. In addition, it is helpful to provide the user with instructions on where to receive additional information or how to contact support.

This can be accomplished in a number of ways. First, this information may be placed on a separate screen in the Flash movie or a separate HTML page. It is recommended that in this case, a link to the information screen be placed at the top of the page in a button titled “Site Info.” Using this short title will help prevent the application from becoming overly verbose. This button can be hidden if desired, but to enable sighted users with disabilities to access the same information, it is recommended that a second link to the same information be placed elsewhere on the screen (likely at the bottom).

Expose state

Flash allows designers to create an infinite variety of controls. In cases where the user is provided visual cues about the state of a control or a screen within the movie, this information should also be made available via a dynamic text field that is updated as the control is activated.

Take the example below. In this case, the movie uses tabs that drop down to indicate which screen is the active screen. While this is a helpful visual cue, this information is not available to screen reader users.

[image: image8.png]
To provide a cue for the screen reader user, a text field is hidden under the banner. Since it is intended to provide information for screen reader users, it need not be visible. As the user moves between screens, the contents of this field reflect the active screen.

Ensure Keyboard Access

It is important that all controls that can be manipulated via the mouse also be accessible via the keyboard. This is intended to support users with mobility impairments as well as screen reader users. The Flash player facilitates keyboard access on its own by automatically making mouse defined events accessible via the keyboard. However, there are two specific techniques commonly used among Flash designers that should be avoided. In addition, designers should add keyboard shortcuts to facilitate keyboard access in complex applications. Finally, designers should be aware of an issue with the Flash Player 6 and earlier in pages that blend HTML and Flash content.

on (click) {

getURL(index.html);

}

For example, the script shown above might be used to open a web page. It is directly associated with the instance of the movie clip used as a button. This script should instead be placed in a frame, likely the first frame, of the movie. The revised script could be as follows.

_root.home_mc.onRelease = function () {

getURL(index.html);

}

Avoid empty hit areas

Hit areas are empty button clips with a shape defined in the hit state. These allow designers to reuse a single library objects repeatedly by placing them over text objects and varying only the scripts used. The problem with this technique is that screen readers assume that if the contents of the up state of a button clip is empty, then it is not a button at all.

The solution to this issue is quite simple. By placing a transparent movie clip in the up state, screen readers will recognize the button and allow the user to activate it.

Assign keyboard shortcuts for most essential controls

In complex applications with multiple controls, it is extremely helpful for users to navigate the application using keyboard shortcuts. For many users with mobility impairments, pressing keys may be very difficult. Using keyboard shortcuts to reduce the number of keystrokes required to perform important tasks.

Using the shortcut field on the Accessibility panel or the .shortcut property in ActionScript is not sufficient for this purpose. Creating a keyboard shortcut requires that a listener event be defined and a script associated with that listener. The shortcut field merely announces a shortcut value via MSAA. It does not create the listener. Moreover, no screen readers support this feature in MSAA as of the writing of this document.

Be aware of ActiveX controls trapping focus within hybrid pages

When using Macromedia Flash Player 6 or earlier versions, users may find that they are not able to tab out of a Flash movie to the HTML contents elsewhere on the page. This is a common issue to all ActiveX controls. The easiest solution to this issue is to update the Flash player to Version 7 or newer.

A work around exists for this issue in earlier versions that requires modifications to the HTML and Flash content. Details on this technique can be found at:

www.sonokids.com/tabnew.html
Enable Component Accessibility

With the release of Macromedia Flash MX 2004, the following accessible components were included with the application.

· Simple Button

· Check Box

· Radio Button

· Label

· Text Input

· Text Area

· Combo Box

· List Box

· Window

· Alert

· Data Grid

For each component, the designer or developer need only enable the accessibility object by using the command enableAccessibility(). This includes the accessibility object with the component as the movie is compiled. Because there is no simple means of removing an object once it has been added to the component, these options are turned off by default. It is therefore very important that the designer or developer enable accessibility for each component. This step needs to be done only once for each component; it is not necessary to enable accessibility for each instance of a component. Here is the sample code added for the label component:

import mx.accessibility.LabelAccImpl;

LabelAccImpl.enableAccessibility();

Again, this code is added only once for each component. It is best to attach this script to the first frame in the movie. The code required for each of the components is listed below.

Simple Button

import mx.accessibility.ButtonAccImpl;

ButtonAccImpl.enableAccessibility();

Check Box

import mx.accessibility.CheckBoxAccImpl;

CheckBoxAccImpl.enableAccessibility();

Radio Button

import mx.accessibility.RadioButtonAccImpl;

RadioButtonAccImpl.enableAccessibility();

Label

import mx.accessibility.LabelAccImpl;

LabelAccImpl.enableAccessibility();

Combo Box

import mx.accessibility.ComboBoxAccImpl;

ComboBoxAccImpl.enableAccessibility();

List Box

import mx.accessibility.ListAccImpl;

ListAccImpl.enableAccessibility();

Window

import mx.accessibility.WindowAccImpl;

WindowAccImpl.enableAccessibility();

Alert

import mx.accessibility.AlertAccImpl;

AlertAccImpl.enableAccessibility();

Data Grid

import mx.accessibility.DataGridAccImpl;

DataGridAccImpl.enableAccessibility();

No additional code is required for the text input and text area components. The player implements the accessibility for these components automatically.

There is a known issue with screen readers and the combo box, list box and data grid components. The Macromedia Flash Player 7 is not able to pass information past the first instance of one of these objects without entering forms mode. This significantly reduces the usefulness of these components.

Provide Captions

Flash is frequently used to deliver audio and video content. Any audio used to deliver substantive content should include a synchronized text equivalent in the form of captions. There are three key strategies for including captions. Captions may be included by importing previously captioned audio content, by placing text objects directly on the stage, or by streaming caption data via XML.

Importing audio content that is already captioned

A simple if rather limited approach to captioning in Flash is to import content that has been captioned in another application. The limitation of this solution is that it limits the design options and flexibility of the application. By building the caption tool directly into Flash, the designer has an increased number of options in terms of formatting and the user interface.

Placing text directly on the stage

A second strategy for captioning Flash content relies on placing text objects directly on the stage. This method is the most precise in terms of synchronizing audio content with the captions, yet it is the most tedious in terms of the effort required on the part of the designer. One particular advantage of this method is that it allows for captions to be positioned on the stage to indicate different speakers as well as emphasis and emotion.

There is a third party tool from Hi Software available to help facilitate delivering captions by placing text objects directly on the stage. The single greatest challenge in delivering captions is creating the transcript of the audio. While voice recognition software has improved tremendously, it still is not a reliable means of converting speech to text automatically. Once the transcript is available, there are two commonly used tools for creating captions: Hi Caption SE from Hi Software and MAGpie from the National Center for Accessible Media. These tools help designers break the transcript into individual screens of text and then set the timing for each of those screens.

Hi Caption SE has the additional advantage of being able to convert this information directly into text objects on the timeline. This is particularly useful in situations where use of XML can result in sandbox violations, such as a Macromedia Breeze presentation.

Streaming xml caption data

The most flexible and straightforward means of delivering caption data in a Flash movie is to stream caption data at run time. This is possible with both Hi Caption SE from Hi Software and MAGpie from the National Center for Accessible Media. Both create a custom XML file with caption data specifically for Flash. This file strips down xml data included in captioning standards such as SAMI and SAPI for improved performance in the Flash player.

HiCaption SE includes a component that imports this xml file and delivers it via a pre-built closed captioning interface. The designer may modify the look and feel of the icon as well as the text used to deliver the captions.

For more information on Hi Caption SE, visit:

www.macromedia.com/software/flash/extensions/hicaption/
For more information about MAGpie visit:

ncam.wgbh.org/webaccess/magpie/
Provide Control Over Audio Playback

Music and audio that plays as the site loads presents a serious challenge to screen reader users. The audio from a Flash movie can interfere with the end users ability to hear the contents of a movie using a screen reader. As a result, it is important to make sure that control over when music is played is provided to the user.

The simplest strategy for handling audio playback is simply to allow the end user to control audio with a play and pause button. Allowing the end user to initiate audio provides the experience of the audio without creating additional hurdles.

[image: image9.png]
A more advanced strategy for controlling playback relies on the use of keyboard shortcuts for audio playback. Providing global keystrokes that allow the user to control the audio can greatly enhance the experience for end users. Here are several controls to consider.

· Play / Pause

· Mute

· Volume

Play and Pause is typically controlled using a single keystroke, such as the letter P, as a toggle. The first time the button is pressed, the audio starts to play. The second time the button is pressed, the audio is paused. A mute button, such as the letter m or the number 0, silences but does not stop the audio. This provides the screen reader user the opportunity to listen to the screen reader temporarily without stopping the audio. Finally, volume controls allow the user to quietly play the audio in the background while still listening to the screen reader. This is most appropriate in cases where the audio does not require the focused attention of the user, as in the case of a music stream.

Use Color Wisely

Given the range of colors available to Flash designers, it is important to emphasize that color selection in Flash content should consider issues for people with color deficits and low vision. This means that color should not be the sole means of providing information. For example, you should never say, “Click on the red button to move forward and the green button to move back.” It is acceptable to reference color, but a second indicator should be used at the same time. The same example would be fine if we add a reference to position as well, “Click on the red button on the right to go forward and the green button on the left to go back.”

A second issue related to the use of color is to ensure that foreground and background colors have sufficient contrast to ensure readability. One way to think of this is if the application were displayed on a black and white television, would the colors be readable. Colors that lack contrast can make it very, very challenging to read elements on the page.

A very helpful tool in making decisions about the use of color is the Color Doctor from Fujitsu. This free tool simulates grayscale as well as three different types of color blindness. The Color Doctor can be found at:

design.fujitsu.com/jp/universal/assistance/colordoctor/
One major issue to note about the Color Doctor is that it is currently only available in Japanese. Just the same, it is helpful to English speaking designers, even if it takes a little longer to decipher the controls.

[image: image10.png]

Support Users with Low Vision

One of the most complicated situations in accessible Flash design is that of a person with low vision who does not rely on the use of a screen magnifier. Users with moderately to severely low vision rely on the use of a screen magnifier to view content on the screen. Magnifiers, such as Zoom Text from AI Squared, not only make the contents of the screen larger but also move the point of focus to the center of the screen to make working with content easier. Many magnifiers also include functionality that allows users to view content in a variety of contrast modes and include screen reader functionality. Screen magnifiers are based on very similar technologies to screen readers. As a result, content that reads well in a screen reader will also tend to read well with a screen magnifier.

However, many people with low vision do not rely on screen magnifiers but instead use the browser settings to change the font size. The Macromedia Flash Player 7 does not support browser settings for font size. As a result, designers need to take additional steps to support users with low vision. There are two key strategies identified here. First, applications built in Flash should incorporate options that allow users to modify the text size of an application when possible. A simple example, shown below allows the user to globally increase the text size from 12 pts to 18 pts by pressing a button on the home screen of the application.

[image: image11.png]
A second strategy is largely relevant in cases where a Flash movie is opened in a new window. These types of small, focused Flash applications can scale to allow the user to scale the movie as the window grows. This serves as a simple means of allowing the end user to increase the font sizes within the application. The example below shows a movie that scales with the window set to a very (ridiculously) small size.

[image: image12.png]
Now the same movie is shown in a larger window. The text throughout the movie is scaled to fill the available window and to allow the layout to reflow.

[image: image13.png]
Resources

Macromedia Accessibility Resource Center at:
http://www.macromedia.com/macromedia/accessibility/
Rich Media Accessibility Center at:
http://ncam.wgbh.org/richmedia/mediatypes/FL.php

Bob Regan Accessibility Blog at:
http://www.macromedia.com/go/bobregan

HiCaption SE at:
http://www.macromedia.com/software/flash/extensions/hicaption/
ACC Repair at:
http://www.macromedia.com/software/flash/extensions/accrepair/
